

SPE-139516-PP

Life beyond 80 - A look at Conventional WAG Recovery beyond 80% HCPV Injection in CO₂ Tertiary Floods

David H. Merchant, SPE, Merchant Consulting

Copyright 2010, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE International Conference on CO2 Capture, Storage, and Utilization held in New Orleans, Louisiana, USA, 10–12 November 2010.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract

During the past 38 years, CO_2 flood technology for Enhanced Oil Recovery projects evolved from a partially understood process filled with uncertainties to a process based on proven technology and experience. Many questions involved with CO_2 flooding have been thoroughly analyzed and answered. This knowledge is currently being used by a limited number of companies that actually know how to design, implement, and manage a CO_2 flood for long term profit. Unfortunately, this knowledge has not been disseminated to operating companies interested in EOR flooding or to CO_2 Sequestration Communities interested in storing CO_2 in EOR projects.

The primary objective of this report is to target "<u>Conventional WAG Techniques</u>" which have been used in over 90% of all the Enhanced Oil Recovery projects implemented in the Permian Basin in Texas, Colorado, Oklahoma, and Wyoming. Over the years, oil companies have reported a wide range of values of Tertiary Oil Recovery, CO₂ Utilization, and CO₂ Retention, resulting in a wide range of variation and uncertainty. Many of the numbers reported to date are tied to a specific HCPV CO₂ Injected based on some Economic Cut-off. This typically has been in the range of 30% to 80% HCPV Injected. The question becomes "What is life after 80% HCPV?" And "What effect does life after 80% HCPV have on Tertiary Oil Recovery, CO₂ Utilization and CO₂ Retention in different producing formations?" Results of this study show Tertiary Oil Recovery can be as high as 26% OOIP when slug sizes exceed 190% HCPV injected.

Carbon Sequestration Options: Five Recovery Methods for Enhanced Oil Recovery (EOR)

Most Enhanced Oil Recovery Projects use one of the following five operating methods: <u>Conventional WAG Recovery</u>, <u>Gravity-stabilized Recovery</u>, <u>Double Displacement</u>, <u>Gas-cycling</u> or <u>Huff-and-Puff</u>. The primary difference between methods depends on the reservoir geology and well pattern configuration. In <u>Conventional CO₂ floods</u>, typical of West Texas, the formations are basically flat (Ramp Sequence), low perm, the fields are developed on pattern spacing (e.g. 5-spot patterns, 9-spot patterns, or Chickenwire patterns), and Conventional WAG Operating schemes are used to control mobility and CO₂ flood response. In conventional WAG operations, the objective is to minimize the amount of CO₂ purchased (CO₂ stored in Sequestration projects), which is typically in the range of range of 30%-40% of the total HCPV CO₂ injected. In un-conventional <u>Gravity-Stabilized</u> and <u>Double Displacement</u> case histories, Flue Gas, CO₂, Lean Gas or N₂ is usually injected in the top of the structure and oil is produced from the bottom. More CO₂ can be sequestered than conventional WAG operations. As much as 80% of the <u>total pore volume</u> can be displaced with CO₂. However, the reservoir must meet certain fluid-dynamic criteria and have structure to make the gravity-stabilized process work. In <u>Gas-cycling projects</u>, typical of projects operated by Denbury in Mississippi, CO₂ is cycled through the formation. As much as 6 pore-volumes of CO₂ are injected to recover 18% OOIP. In <u>Huff-and-Puff</u> operations, the CO₂ is injected into and produced from the same well. The objective is to mobilize tertiary oil in the near vicinity of the well-bore, and then produce the CO₂ and tertiary oil back. Then repeat the process (typically with 3 cycles). The process technically works. The economic success or failure depends on many factors. The amount of CO₂ sequestered is minimal when compared to the other recovery methods.

Conventional WAG Recovery

Conventional WAG Operating Methods in the Permian Basin fall into one of four categories:

- 1. Continuous CO₂ Injection
- 2. Constant WAG Injection
- 3. Tapered WAG Injection
- 4. Simultaneous CO₂ Injection (Limited use)

What is WAG Management?

All <u>Conventional WAG Injection Projects</u> have one thing in common. CO₂ is injected into the reservoir and the produced recycle CO₂ must be re-injected back into the reservoir to maximize oil recovery. This was first demonstrated by Caudle and Dyes in 1958 when water was added to CO₂ to decrease solvent mobility ^{Turek, 1}. As CO₂ technology was transferred from the lab to the field, most all of the Major Oil Companies in the 1970's and early 1980's adopted the use of <u>Constant Water-Alternating-Gas</u> (WAG) Injection based on the theory that alternate gas water injection is necessary to maintain mobility control and maximize oil recovery. During the late 1980's, <u>Tapered WAG Operations</u> were adopted to improve the overall recovery process ^{Merchant, 2,3,4,5, and ⁶. WAG Injection can be best demonstrated as shown in Figure 1a and 1b. CO₂ and Water are injected into the reservoir in alternating CO₂ and water slug sizes. For Constant WAG operating schemes, the half cycle slug size is typically <u>fixed</u> for example at 1.0% HCPV CO₂ for the Gas Cycle and 1.0% H₂O for water. For Tapered Wag projects, WAG Ratios change with time. Typically for most CO₂ operations today, "Wetting the WAG" or increasing water half cycle volume with time improves conformance by slowing the gas in the fast zones. The water half cycle can be increased or decreased to help operational switch times in the field to improve overall conformance problems or adjusted to "Level Load" gas production to a Plant inlet rate improving overall project economics while maximizing oil recovery.}

Figure 1a. Conventional WAG Process

Figure 1b. Conventional WAG Process

Reservoir Modelling

Through the 1980's and 1990's, Amoco, Shell, Arco, Mobil, and Texaco committed significant manpower to evaluate the feasibility of full field scale CO_2 flooding in the Permian Basin. Before the initiation of field scale floods, many pilots were drilled and much reservoir simulation was conducted to understand the CO_2 flooding process. Today, there are over 82 active CO_2 projects in the United States producing over 237,000 BOPD and CO_2 flooding is expanding to many parts of the world. Reservoir simulation has been an integral part of reservoir management in understanding the CO_2 flood tertiary recovery process. Reservoir Modelling was used in the development of Tapered WAG ^{2,3,4,5, and 6}. Simulation today is used in the initial design of slug sizes and gas-water ratios (GWR), and allows Reservoir Engineers to explore different operating scenarios that best match field performance.

The development of Reservoir Simulators over the years has permitted a greater reliability in simulating the miscible process over a wide range of injection gas-water ratios. Confidently estimating the response of the reservoir to CO₂ injection generally involves history matching Primary and Secondary performance. The model developed for this study has properties that are typical of West Texas San Andres Dolomite reservoirs. These models incorporate the latest state-of-the-art understanding of the physics and mathematics pertaining to reservoir characteristics, recovery mechanisms, and operating conditions. In 1986, the model used to develop tapered WAG was simulated with Amoco's GCOMP simulator in Blackoil mode with a miscible option (3 hydrocarbon component model). This model implies the solvent mixes with the reservoir oil in all proportions with no phase separation. Today, Compositional Simulation is being used to simulate the miscible process.

Model Development

For this analysis, it was important to determine if the predictions generated by the simulator reasonably agreed with actual field performance. The model used in this study incorporates historical production and injection waterflood performance from the Slaughter Estate Unit in Slaughter field and scaled to a single five-spot pattern ^{2,3,4,5, and 6}. In addition, lessons learned from full-field CO₂ flooding experience provided additional insight of both reservoir heterogeneity and understanding of the complex CO₂ flood process. The Model represents an inverted 5-spot (10X10X6 Grid) Well Configuration with Injector in the middle and one-quarter Producers located on the corners. The model contains six layers with phi-h and k-h varying areally. The model contains both a Primary Recovery Period as well as a Secondary Recovery Period of water injection. Reservoir Parameters are shown on the next page in Table 1.

Average Model Properties	Average Model Properties							
Model Type:	Average Patter	n (5-spot)		Net-	Porosity-	Permeability-	k/ph	
Pattern Segment Model Size - a	acres	25	Model	Thickness	Thickness	Thickness		
Depth, Feet		5000	Layer	ft	ft	md-ft	k-h / phi-h	
Reservoir Temperature, deg F		105	1	17	1.5	21.8	15	
Net Pay, Feet		104	2	24	3.0	129.6	44	
Average Porosity, percent		11.4	3	13	1.7	127.3	76	
Average Permeability, md		6.4	4	14	2.2	160.3	75	
Oil FVF @ Original Bubble Poin	t RB/STB	1.228	5	10	1.1	166.3	154	
Oil Reservoir Pressure @ 1300	feet subsea, psi	1710	6	27	2.6	56.9	22	
Bubble Point Pressure @ 1300	feet subsea, psi	1710	Total	104	11.9	662.2	56	
CO ₂ Miscibility Pressure, psi		1200						
Number of Model Layers		6						

Table 1 - Model Grid Properties (General)

Model – Primary and Secondary Recovery

Primary and Secondary Production and Injection History for the 25-acre model are shown on Figures 2a, 2b, 3a, and 3b. For the 25 acre model, Primary Oil Rate peaked around 125 BOPD and Secondary Oil Rate peaked around 215 BOPD.

Figure 2a. – Historical Production Performance

Figure 2b. – Historical Injection Performance

Figure 3b. – Historical Oil Recovery Performance

When conducting Tertiary CO₂ predictions, Historical Primary plus Secondary Waterflood Performance is a <u>key</u> parameter to achieving high Tertiary Oil Recovery. The Primary and Secondary waterflood oil recovery performance shown above is considered "Good" waterflood response when Primary plus Secondary Recovery exceed 40% OOIP. When waterflood performance is less than 40%, Tertiary Performance Predictions should be scaled-down to match historical performance.

Optimization Case Comparisons - Case Studies (20% HCPV to 80% HCPV Injected)

Future Predictions under any type of Recovery Mechanism are a very important aspect of any type of Economic Analysis. For Optimization, the factors which influence CO₂ Flood Economics are: (1) Oil and Hc-gas Price, (2) CO₂ Plant and Pipeline Capital Investment Costs, (3) CO₂ Purchase Costs (including Pipeline Tariffs), (4) CO₂ Plant Processing Costs, (5) Field Operating Costs (Workover and Lift), and (6) Overhead.

Tertiary Oil Recovery under CO₂ Injection is a function of the total amount of CO₂ Injected. As shown in Figure 4a, comparing total CO₂ HCPV injection between cases assuming a 1.0 BOPD cutoff (No Economics), Reservoir Recovery for the three operating methods are statistically the same. When economics are applied to each of the cases, Figure 4b, the amount of Tertiary Oil Recovered and Present Value Economics are different between cases. Based on Economics, a 30% HCPV CO₂ Slug is Economically Optimum for Continuous CO₂ Injection, a 50% HCPV CO₂ Slug is Economically Optimum for Constant WAG Injection, and a 70% HCPV CO₂ Slug is Economically Optimum for Tapered WAG Injection.

Oil Production Rate and Tertiary Oil Recovery comparing the three Economic cases are shown above on Figures 5a and 5b. The total amount of CO₂ injected determines the amount of Tertiary Oil Recovered. The greater the amount of CO₂ injected, the greater the Tertiary Oil Recovery. The objective in a CO₂ flood is to accelerate the CO₂ Injection as quickly as possible, without fracturing the reservoir. Continuous Injection accomplishes this goal. Constant WAG Injection has the ability to control reservoir sweep, extending CO₂ flood life. Tapered WAG Injection combines the best of both. In addition to accelerating the front end Economics, it also recovers the most tertiary reserves.

Economic Comparison – CO₂ Injection and Production

Figure 6b. – CO₂ Production Rate

 CO_2 Production and its associated Plant Investment is a major component in Economic analysis. A taperd WAG operating scenario extends tertiary oil recovery beyond Continuous and Constant WAG operations by controlling CO_2 production by "Level-loading Inlet Plant Rate CO_2 Production" to a plant inlet rate to control costs.

Figure 7a. – Tertiary CO₂ Purchase Rate and

The Total CO_2 Slug Size consists of two parts. The CO_2 Purchase portion always occurs at the start of the project. The Recycle Portion, which is the CO_2 recovered through production, is processed through a plant and injected back into the reservoir. The volume purchased and the purchase times for injection are dependent on the total CO_2 slug injected. In Tapered WAG designs, CO_2 is purchased throughout the life of the CO_2 flood. As shown above, the amount of CO_2 purchased declines as the tertiary flood matures.

CO₂ Sequestration

The amount of CO_2 Purchased in EOR operations is also the amount of CO_2 Sequestered in CO_2 Sequestration projects. As shown above in Figure 7b, this amount is typically in the range of 30% to 40% of the total HCPV injected. Separate from CO_2 Retention, which is the amount of CO_2 retained as a percent of total amount of CO_2 injected, the amount of CO_2 stored in the reservoir or sequestered is always 100% of the CO_2 purchased volume.

Figure 8a. – Tertiary Water Injection Rate

The key to Optimization is the ability to control CO_2 processing costs. This is accomplished by injecting water as a mobility control agent. For this study, increasing half cycle water volumes occurred every 10% HCPV Inj CO_2 . This resulted in a nearly flat CO_2 production response to "Level Load" CO_2 Gas Production Rate to a "Plant Inlet Rate".

Figure 9a. – CO₂ Gross Utilization

Figure 9b. – CO₂ Net Utilization

 CO_2 Utilization is an efficiency measure of how much CO_2 is used to recovery a barrel of Tertiary Oil. Gross Utilization is defined as the Cumulative <u>Total</u> amount of CO_2 Injected per total amount of Tertiary Oil Produced, typically 10 to 20 MSCF/BO. Net CO_2 Utilization is defined as the Cumulative <u>Purchased</u> amount of CO_2 per total amount of Tertiary Oil Produced, typically in the range of 5-10 MSCF/BO.

Economic Comparison – CO₂ Retention

Figure 10a. – CO₂ Retention

 CO_2 Retention is an Engineering term used to relate the total amount of CO_2 retained in the reservoir to the total amount of CO_2 injected. It represents the percent of Cumulative CO_2 Injected minus Cumulative CO_2 Produced divided by the amount of Cumulative CO_2 Injected. As the CO_2 flood matures, the retention will decrease from 100% to some minimum value.

Life beyond 80% HCPV- Tapered WAG Injection (20% HCPV to 190% HCPV Injected)

The question becomes "What is life after 80% HCPV?" And "What effect does life after 80% HCPV have on CO_2 Utilization and CO_2 Retention in different producing formations?" The answer to those questions is shown below.

Life beyond 80% HCPV - Tertiary Oil Rate and Oil Recovery

Oil Production Rate and Tertiary Oil Recovery comparing the extended CO₂ Slug size fom 20% HCPV to 190% HCPV

Figure 11a – Tertiary Oil Rate (Tapered WAG)

Figure 11b. – Tertiary Oil Recovery (Tapered WAG)

CO₂ Production (Level Loaded) and Total Fluid Rate comparing CO₂ Slug size fom 20% HCPV to 190% HCPV

Figure 12a – Tertiary CO₂ Rate (Tapered WAG)

Figure 12b – Total Fluid Rate (Tapered WAG)

As shown above, extending Total CO2 slug size beyond 80% HCPV extends Teritary Oil Recovery. A 190% HCPV slug size improves Tertiary Oil Recovery to 26% OOIP.

Factors that control Tertiary Oil Recovery

The ability to achieve High Tertiary Recovery in New CO₂ floods depends on the following factors:

- 1. Large Original Oil-in-Place
- 2. Rock Type: Dolomite and Sandstone better than Limestone, Un-fractured Formations better than Fractured Formations
- 3. Good Pattern Development Fields with many patterns achieve the highest tertiary recovery
- 4. Historical Primary and Secondary Waterflood Performance (Prim + Secondary Rec should be above 40% OOIP)
- 5. Primary + Secondary + Tertiary Recovery less than 70% OOIP (CO₂ will never remove all the oil)
- 6. CO₂ miscible with the oil (100% efficiency is best but can be operated below MMP)
- 7. Good Reservoir Conformance between injectors and producers
- 8. Good Porosity, Good Permeability, and Good k/phi distribution
- 9. Good Residual Oil Saturation Target (Approx. Range: Dolomites 30%, Cherts 25%, Sandstones 20%)
- 10. Good Economics: High Oil Price, Low CO2 Purchase Price, Low Recycle Plant and Field Capital Investments
- 11. CO₂ Source that is reliable and of high quality (Pipeline in close proximity)
- 12. Conventional WAG should be able to Sequester or STORE 30% to 40% HCPV (CO₂ Purchase Volume)

Life beyond 80% HCPV- (Tertiary Oil Recovery, CO₂ Gross and Net Utilization)

Since 1972, over 100 Commercial CO_2 floods have been operated in the United States, with 72 of these projects still active today. During this time, Engineers have reported a wide range of Tertiary Oil Recovery, Gross Utilization and Net Utilization values at varying stages of maturity. The question becomes "What would Operators report on these CO_2 floods today?" And "What would Oil Recovery, Gross Utilization and Net Utilization look like under Extended CO_2 Slug volumes?" The answer to those questions depends on Reservoir Type. Data from these CO_2 projects from various SPE and DOE reports are listed below by formation type:

Tuble and that the of a star build building	Table 2.	- San	Andres	and	Gravbu	rg Foi	rmation –	Dol	lomit
---	----------	-------	--------	-----	--------	--------	-----------	-----	-------

				Current E	onomic		Life beyond	1 80% HCP¥ Inj		
State	Formation	Field	Lease	Tertiary Recovery (%00IP)	Gross CO ₂ Utilization (MSCF/STB)	Net CO ₂ Utilization (MSCF/STB)	Tertiary Recovery (%00IP)	Gross CO2 Utilization (MSCF/STB)	Net CO2 Utilization (MSCF/STB)	Bibliography References
Texas	San Andres	Wasson	Denver Unit	15 to 20	10 to 15	5 to 10	20 to 25	5 to 10	1 to 5	7,8,9,10
Texas	San Andres	Wasson	Denver Unit-ROZ	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	11,18
Texas	San Andres	Wasson	Wasson ODC Unit	15 to 20	10 to 15	5 to 10	20 to 25	5 to 10	1 to 5	12
Texas	San Andres	Wasson	Cornell Unit	15 to 20	10 to 15	5 to 10	20 to 25	5 to 10	1 to 5	13
Texas	San Andres	Wasson	Bennett Ranch Unit	15 to 20	10 to 15	5 to 10	20 to 25	5 to 10	1 to 5	14,15
Texas	San Andres	Wasson	Willard Unit	15 to 20	10 to 15	5 to 10	20 to 25	5 to 10	1 to 5	16
Texas	San Andres	Seminole	Seminole Unit-Main Pay	20 to 25	10 to 15	5 to 10	25 to 30	5 to 10	1 to 5	17
Texas	San Andres	Seminole	Seminole Unit-ROZ	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	11,18
Texas	San Andres	Slaughter	Slaughter Estate Unit	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	19 thru 24
Texas	San Andres	Slaughter	Frazier Unit	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	
Texas	San Andres	Slaughter	Central Mallet Unit	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	25
Texas	San Andres	Slaughter	Slaughter Sundown	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	26, 27, 28
Texas	San Andres	Slaughter	Mobil Mallet Unit	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	29
Texas	San Andres	Slaughter	H T Boyd Unit	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	
Texas	San Andres	Slaughter	Igoe Smith	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	
Texas	San Andres	Slaughter	Alex Slaughter Estate	15 to 20	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	
Texas	San Andres	Levelland	Levelland	5 to 10	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	30,31,32
Texas	San Andres	Means (San Andres)	Means (San Andres)	10 to 15	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	33,34
Texas	San Andres	Goldsmith	Goldsmith	10 to 15	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	35,36
Texas	San Andres	Hanford	Hanford	10 to 15	15 to 20	5 to 10	20 to 25	10 to 15	5 to 10	37
New Mexico	Grayburg San Andres	Vacuum	East Vacuum	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	38,39
New Mexico	Grayburg San Andres	Vacuum	Central Vacuum	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	40
New Mexico	Grayburg San Andres	Maljamar	Maljamar Unit	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	41,42
New Mexico	Grayburg San Andres	North Hobbs	North Hobbs	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	
Texas	San Andres	East Penwell (SA) Unit	East Penwell (SA) Unit	5 to 10	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	
Texas	Grayburg	Mabee	Mabee	10 to 15	15 to 20	5 to 10	15 to 20	10 to 15	5 to 10	43
Texas	San Andres	GMK South	GMK South	5 to 10	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	44
Texas	San Andres	Adair San Andres Unit	Adair San Andres Unit	5 to 10	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	
Texas	San Andres	Cedar Lake	Cedar Lake	5 to 10	15 to 20	5 to 10	5 to 10	15 to 20	5 to 10	
Texas	San Andres	Welch	West Welch	5 to 10	15 to 20	5 to 10	10 to 15	10 to 15	5 to 10	45
Texas	San Andres	Welch	South Welch	5 to 10	15 to 20	5 to 10	10 to 15	10 to 15	5 to 10	46
Texas	Grayburg San Andres	Cowden	North Cowden Demo.	5 to 10	15 to 20	5 to 10	5 to 10	15 to 20	5 to 10	
Texas	San Andres	Cowden	South Cowden	5 to 10	15 to 20	5 to 10	5 to 10	15 to 20	5 to 10	47,48

Table 3. - Clearfork Formation – Limestone (Tight - Low Permeability)

				Current Economic			Life beyond			
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	
				Recovery	Utilization	Utilization	Recovery	Utilization	Utilization	Bibliography
State	Formation	Field	Lease	(%00IP)	(MSCF/STB)	(MSCF/STB)	(%00IP)	(MSCF/STB)	(MSCF/STB)	References
Texas	Clearfork	Anton Irish	Anton Irish	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	49
Texas	Clearfork	Wasson (South)	Wasson (South)	1 to 5	10 to 15	5 to 10	1to 5	10 to 15	5 to 10	50

Table 4. - Devonian Formation – Tripolitic Chert

				Current Ec	onomic		Life beyond			
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	Diblic secols
State	Formation	Field	Lease	(x00IP)	(MSCF/STB)	(MSCF/STB)	(200IP)	(MSCF/STB)	(MSCF/STB)	Bibliography Beferences
Texas	Devonian	Dollarhide	Dollarhide Devonian Unit	10 to 15	5 to 10	1 to 5	15 to 20	5 to 10	1to 5	51 thru 54
New Mexico	Devonian	Dollarhide	West Dollarhide Unit	10 to 15	5 to 10	1 to 5	15 to 20	5 to 10	1 to 5	
Texas	Devonian	Dollarhide	North Dollarhide Unit	5 to 10	5 to 10	1 to 5	10 to 15	5 to 10	1 to 5	55
Texas	Devonian	North Cross	N. Cross-Devonian Unit	35 to 40	5 to 10	1 to 5	40 to 45	5 to 10	1 to 5	56-57

Table 5. - Canyon Reef Formation – Karsted Limestone (High Permeability)

				Current Ec	onomic		Life beyond			
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	
				Recovery	Utilization	Utilization	Recovery	Utilization	Utilization	Bibliography
State	Formation	Field	Lease	(%00IP)	(MSCF/STB)	(MSCF/STB)	(%00IP)	(MSCF/STB)	(MSCF/STB)	References
Texas	Canyon Reef	Kelly Snyder (Sacroc)	Sacroe Unit	10 to 15	10 to 15	5 to 10	15 to 20	10 to 15	5 to 10	58 thru 65
Texas	Canyon Reef	Salt Creek	Salt Creek	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	66,67
Texas	Canyon Reef	Sharon Ridge	Sharon Ridge	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	68
Texas	Canyon Reef	Cogdell	Cogdell	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	69

				Current Economic			Life beyond	l 80% HCP¥ Inj		
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	
				Recovery	Utilization	Utilization	Recovery	Utilization	Utilization	Bibliography
State	Formation	Field	Lease	(%00IP)	(MSCF/STB)	(MSCF/STB)	(%00IP)	(MSCF/STB)	(MSCF/STB)	References
Texas	Strawn	Katz	Katz	10 to 15	10 to 15	5 to 10	15 to 20	10 to 15	5 to 10	70
Oklahoma	Morrow	Postle	Postle	10 to 15	10 to 15	5 to 10	15 to 20	10 to 15	1 to 5	71,72
Oklahoma	Morrow	Camrick	Camrick	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	
Texas	Delaware Ramsey	Twofreds	Twofreds	10 to 15	10 to 15	5 to 10	15 to 20	10 to 15	5 to 10	73,74,75
Texas	Delaware Ramsey	Ford Geraldine	Ford Geraldine	10 to 15	10 to 15	5 to 10	15 to 20	10 to 15	5 to 10	76,77
Texas	Delaware Ramsey	El Mar	El Mar	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	
Texas	Delaware Ramsey	East Ford	East Ford	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	
Texas	Springer	Northeast Purdy	Northeast Purdy	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	78
Texas	Marmaton	Hansford Marmaton	Hansford Marmaton	10 to 15	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	79
Texas	Yates	North Ward Estes	North Ward Estes	5 to 10	10 to 15	1 to 5	10 to 15	10 to 15	1 to 5	80
California	Stevens MMB	Elk Hills	Elk Hills MMB	10 to 20	10 to 15	5 to 10	20 to 30	10 to 15	5 to 10	81

Table 6. - Strawn, Morrow, Delaware, Springer, Marmaton, and Yates (Fluivial Deltaic, Point Bar, Turbidite)

Table 7. - Tensleep, Mesaverde Almond, Weber, Sprayberry (Fractured Sandstone)

				Current Ec	onomic		Life beyon			
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	
				Recovery	Utilization	Utilization	Recovery	Utilization	Utilization	Bibliography
State	Formation	Field	Lease	(%00IP)	(MSCF/STB)	(MSCF/STB)	(%00IP)	(MSCF/STB)	(MSCF/STB)	References
Wyoming	Tensleep	Wertz	Wertz	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	82
Wyoming	Tensleep	Lost Soldier	Lost Soldier	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	83 thru 86
Wyoming	Mesaverde Almond	Patrick Draw Monell	Patrick Draw Monell	5 to 10	10 to 15	5 to 10	10 to 15	10 to 15	5 to 10	
Colorado	Weber SS	Bangely	Rangely Weber Unit	5 to 10	5 to 10	1 to 5	10 to 15	5 to 10	1 to 5	87 thru 92
Texas	Sprayberry	Sprayberry	Sprayberry	0 to 2	10 to 15	5 to 10	0 to 2	10 to 15	5 to 10	93,94

Table 8. - Heavy Oil

				Current Economic			Life beyond			
				Tertiary	Gross CO ₂	Net CO ₂	Tertiary	Gross CO ₂	Net CO ₂	
				Recovery	Utilization	Utilization	Recovery	Utilization	Utilization	Bibliography
State	Formation	Field	Lease	(%00IP)	(MSCF/STB)	(MSCF/STB)	(%00IP)	(MSCF/STB)	(MSCF/STB)	References
California	Ranger	Wilmington (Onshore)	FB1, FB3, FB5	10 to 15	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	95 thru 98
Arkansas	Ozan (Meaken Sand)	Lick Creek	Lick Creek Unit	10 to 15	15 to 20	5 to 10	10 to 15	15 to 20	5 to 10	99, 100

Conclusion

With more than thirty-eight years of successful enhanced oil recovery (EOR) projects in the Permian Basin (Texas), Mississippi, Wyoming, Colorado, California, Oklahoma, and several countries worldwide, carbon dioxide CO_2 flooding is a proven method for extending field life. CO_2 acts as a solvent to overcome forces that trap oil in tiny rock pores, helping sweep immobile oil left after primary or secondary recovery operations. Generally, CO_2 is not miscible at first contact with reservoir oils, but miscibility can be developed in reservoirs above or near the Minimum Miscibility Pressure (MMP). CO_2 can attain miscibility through a multiple-contact process that vaporizes or extracts both intermediate and higher molecular weight hydrocarbons from the reservoir oil. The CO_2 phase picks up many intermediate hydrocarbon components from the oil, swells the oil, and reduces oil viscosity, making it mobile to move through the rock.

Advances in technology and reservoir understanding have made detailed evaluation of potential EOR candidates obtainable within months, not years. In addition, improved reservoir management and innovative investment plans have significantly reduced risks and increased rewards. Many of the original questions about CO₂ flooding involved the displacement efficiency of the process, how CO₂ would interact with the oil, and how much oil could be recovered. Many of these questions have been answered with better reservoir management tools. Not all fields are good candidates for CO₂ Tertiary Recovery. A reservoir must contain certain characteristics for a CO₂ flood to be successful. In the past, it was thought the oil must be found at depths sufficient to allow for high pressures, so that CO₂ and oil develop total miscibility. This is not necessary correct. Most CO₂ floods operate at reservoir pressures that are above their minimum miscibility pressure. But today, it is not uncommon to find CO₂ projects that operate below or near the minimum miscibility pressure. The CO₂ still produces tertiary oil. The process is not as efficient as that operated above the minimum miscibility pressure. Most historical CO₂ floods have targeted reservoirs that have a gravity of 25 API units or greater, but low API Gravity reservoirs are also targets. For example: Wilmington field in California produces 14 API Gravity crude from the Ranger formation. Three pilots were conducted in Fault Blocks I, III, and V. Eventhough economic performance was reported poor, mostly due to an inadequate CO₂ source and low oil price environment, a good number of wells increased oil rate from 30 BOPD to over 300 BOPD after CO_2 was injected. CO_2 has the ability to affect the full C_2 through C_{30+} compositional range. Whereas, Nitrogen, and in some cases flue gas injection, will only extract the lighter components (C_2 through C_6). In addition, a high percentage of intermediate hydrocarbons in the oil composition can be beneficial in making the overall recovery process more efficient. If these occur naturally in the oil, then the oil will probably contain a low value of Minimum Miscibility Pressure (MMP). If the oil has a high MMP, then additions such as propane, butane, condensate, or other types of hydrocarbons can be added to the CO₂ injection stream to lower the minimum miscibility pressure and improve overall oil recovery.

References

Conventional WAG CO₂ Flood History

- 1. Turek, E.A., Christopher, C.A., Stein, M.H., Merchant, D.H., "History of WAG Development" by Turek, Prepared for BP under Amoco's Learning Program, Internal Report, October, 2000.
- Merchant, D.H., "GWR and Slug Size Optimization of the WAG Process", Prepared for Amoco Production Company, Permian Basin Business Unit, Internal Report, File: JWA-539.41-111, Model Study 1986-1987, Report Published: January 1988.
- Merchant, D.H., "Injection Well Profiling of the CO₂ Recovery Process", Prepared for Amoco Production Company, Permian Basin Business Unit, Internal Report, File: DDF-539.41-1586, Model Study 1987-1988, Report Published: August 1988.
- 4. Merchant, D.H., "EOR/ CO₂ Storage Optimization and Economics 2004 CCP Program ", Prepared for BP Alternative Energy under the Carbon and Capture Program CCP, An Integrated, Collaborative Technology Development Project for Next Generation CO₂ Separation, Capture and Geologic Sequestration, Subcontract C010: EOR/CO2 Storage Optimization and Economics 2004 Program, Date Published: December 2004.
- Merchant, D.H., "Enhanced Oil Recovery Methods Conventional CO₂ WAG Injection", Prepared for BP Alternative Energy under the Carbon and Capture Program CCP1, An Integrated, Collaborative Technology Development Project for Next Generation CO₂ Separation, Capture and Geologic Sequestration, Subcontract C010: EOR/CO₂ Storage Optimization and Economics – 2004 Program, Date Published: October 2005.
- 6. Merchant, D.H., "Comparisons of Conventional CO₂ WAG InjectionTechniques used in the Permian Basin", presented at the 15th Annual CO₂ Flooding Conference, Midland, Texas, December 10-11, 2009.

Field Study CO₂ Tertiary Reports – SPE and DOE

- 7. Tanner, C.S., Baxley, P.T., CHI, J.G., and Miller W.C., "Production Performance of the Wasson Denver Unit CO₂ Flood," SPE 24156, SPE/DOE Eighth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 1992.
- 8. Kittridge, M.G., "Quantitative CO₂ Monitoring, Denver Unit, Wasson (San Andres field), SPE 24644, presented at the 67th Annual Technical Conference and Exhibition of SPE held in Washington DC, October, 1992.
- Hsu, C-F, Morell, J.I., Falls, A.H., "Field-Scale CO₂ Flood Simulations and Their Impact on the Performance of the Wasson Denver Unit", SPE 29116, presented at 13th SPE Symposium on Reservoir Simulation held in San Antonio, Texas, 12-15 February 1995.
- Coalmer, M.S., Hsu, C.F., Cooper, J.C., Ward, J.B., Voto, J.G., Way, K.F., and Valdez, R., "Reservoir Characterization and Development Plan of the Wasson San Andrees Denver Unit Gas Cap", SPE 56549-MS, presented at the Annual Technical Conference and Exhibition of SPE held in Houston, Texas, October 3-6, 1999.
- Koperna, G.J., Melzer, L.S., Kuuskraa, V.A., "Recovery of Oil Resources From the Residual and Transitional Oil Zones of the Permian Basin", SPE 102972-MS, presented at the Annual Technical Conference and Exhibition of SPE held in San Antonio, Texas, September 24-27, 2006.
- 12. Bullock, G.W., Wood, T.B, Konecki, M.L., "A Brief History of the Wasson EOR Project", Wasson ODC, SPE 17754-PA, SPE Production Engineering Journal, Volume 5, Number 3, Pages 338-344, August, 1990.
- Todd, M.R., Cobb, W.M., McCarter, E.D., "CO₂ Flood Performance Evaluation for the Cornell Unit, Wasson San Andres Field", SPE 10292-PA, Journal of Petroleum Technology, Volume 34, Number 10, Pages 2271-2282, October 1982.
- Hsu, C-F, Fitzgerald, M.A., Musallam, S.C., McCray, T.L., Purvis, W.D., "Design and Implementation of a Grass-Roots CO₂ Project for the Bennett Ranch Unit", SPE 35188, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 27-29, 1996.
- 15. Altura Company, "Wasson Field, Bennett Ranch Unit, Wasson ODC Unit, and Denver Unit CO₂ Performance Update, Yoakum and Gaines County, Texas", presented at the Annual CO₂ Flooding Conference, Midland, Texas, December 7-8, 1999.
- 16. Johnston, J.W., "A Review of the Willard (San Andres) Unit CO₂ Injection Project", SPE 6388-MS, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 10-11, 1977.
- 17. Wang, F.P., Lucia, F.J., Kerans, C., "Integrated Reservoir Characterization Study of a Carbonate Ramp Reservoir: Seminole San Andres Unit, Gaines County, Texas", SPE 36515-PA, SPE Reservoir Evaluation and Engineering Journal, Volume 1, Number 2, Pages 105-113, April 1998.
- Melzer, L.S., Koperna, G.J., Kuuskraa, V.A., "The Origin and Resource Potential of Residual Oil Zones", SPE 102964-MS, presented at the Annual Technical Conference and Exhibition of SPE held in San Antonio, Texas, September 24-27, 2006.
- 19. Rowe, H.G., York, S.D., and Ader, J.C., "Slaughter Estate Unit Tertiary Pilot Performance", SPE 9796, presented at the 1981 SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 5-8, 1981.

- 20. Ader, J.C. and Stein, M.H., "Slaughter Estate Unit Tertiary Miscible Gas Pilot Reservoir Description," SPE 10727, Oil and Gas Journal, May, 1984.
- 21. Stein, M.H., Frey, D.D., Walker, R.D., and Pariani G.J., "Slaughter Estate Unit CO₂ Flood: Comparison between Pilot and Field-Scale Performance", SPE 13975, JPT, September, 1992.
- 22. Pariani, G. J., McCofloch, K. A., Warden, SJ-., and Edens, D.R., "An Approach To Optimize Economics in a West Texas C02 Flood," JPT, Sept., 1992.
- 23. Merchant D.H. and Thakur, S.C., "Reservoir Management in Tertiary CO₂ Floods", SPE 26624, presented at the 68th Annual Technical Conference and Exhibition, Houston, Texas, October 1994.
- Drennon, M.D., Kelm, C.H., and Whittington, H.M., "A Method for Appraising the Feasibility of Field-Scale CO₂ Mscible Flooding," SPE 9323, 1980 SPE SPE Annual Technical Conference and Exhibition, Dallas, Sept 21-24, 1980.
- 25. Honnert, M., Creel, P., Tate, R., and Everett, D., "Five Years of Ongoing Conformance Work in the Central Mallet Unit CO₂ Flood in West Texas Yields Improved Economics for Operator", SPE 101701-MS, presented at First International Oil Conference and Exhibition in Mexico, August 31st to September 2nd, 2006.
- Guillot, S.N., "Horizontal Well Applications in a Miscible CO₂ Flood, Sundown Slaughter Estate Unit, Hockley County, Texas", ," SPE 30742, SPE SPE Annual Technical Conference and Exhibition, Dallas, October 22-25, 1995.
- Folger, L.K., "Improved CO₂ Flood Predictions Using 3D Geologic Description and Simulation on the Sundown Slaughter Unit", SPE 35410, presented at SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 21-24, 1996.
- Folger, L.K., Guillot, S.N, "A Case Study of the Development of the Sundown Slaughter Unit CO₂ Flood Hockley County, Texas", SPE 35189, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 27-29, 1996.
- 29. Kuo, M.C.T., Dulaney, J.P, Deer, M.W., Evans, B.S., Granquist, M.R., "Optimization of Waterflood Performance and CO₂ Flood Design Using a Modelling Approach, Mallet Unit, Slaughter Field", SPE 20377, presented at the 65TH Annual Technical Conference and Exhibition held in New Orleans, LA, September 23-26, 1990.
- Henry, R.L., Feather, G.L., Smith, L.R., Fussell, D.D.,"Utilization of Composition Observation Wells in a West Texas CO₂ Pilot Flood", Levelland Unit, SPE 9786-MS, presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 5-8, 1981.
- Yellig, W., "Carbon Dioxide Displacement of a West Texas Reservoir Oil", Levelland, SPE 9785-PA, SPE Oil and Gas Journal, Volume 22, Number 6, Pages 805-815, December, 1982.
- 32. Macon, R.B., Design and Operation of the Levelland Unit CO₂ Injection Facility", SPE 8410-MS, presented at the Annual Technical Conference and Exhibition held in Las Vegas, Nevada, September 23-26, 1979.
- Magruder, J.B., Stiles, L.H. and Yelverton, T.D., "A Review of the Means San Andres Full-Scale CO₂ Tertiary Project", SPE/DOE 17349, presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 17-20, 1988.
- Hambly, E., "Means San Andres Unit A History of CO₂ Flood Performance and Management", presented at the Annual CO₂ Flooding Conference, Midland, Texas, December 7-8, 1999.
- Jasek, D.E., Frank, J.R., Smith, D.J., "Goldsmith San Andres Unit CO₂ Pilot Design, Implementation, and Early Performance", SPE 48945-MS, presented at the Annual Technical Conference and Exhibition held in New Orleans, LA, September 27-30, 1998.
- Merchant, D.H., "Goldsmith Unit Tertiary Performance Evaluation CO₂ Prediction", developed for Shell CO₂ Company and Chevron USA, Internal Report, January, 2000.
- Merritt, M.B. and Groce, J.F., "A Case History of the Hanford San Andres Miscible CO₂ Project", SPE/DOE 20229, presented at the SPE/DOE Seventh Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 22-25, 1990.
- Brownlee, M.H. and Sugg, L.A., "East Vacuum Grayburg-San Andres Unit CO₂ Injection Project Development and Results to Date", SPE 16721, presented at the 62nd Annual Technical Conference and Exhibition, Dallas, Texas, Sept 27-30, 1987.
- Martin, F.D. and J.E. Stevens, Harpole, K.J., "CO₂-Foam Field Test at East Vacuum Grayburg/San Andres Unit", SPE 27786, presented at the SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 17-20, 1995.
- Boomer, R.J., "Central Vacuum Unit CO₂ Performance Overview (SE New Mexico)", presented at the Annual CO₂ Flooding Conference, Midland, Texas, December 7-8, 2001.
- Pittaway, K.R., Albright, J.C. and Hoover, J.W., "The Maljamar Carbon Dioxide Pilot: Review and Results", SPE/DOE 14940, presented at the SPE/DOE Fifth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 20-23, 1986.
- 42. Moore, J.S. and Clark, G.C., "History Match of the Maljamar CO₂ Pilot Performance", SPE/DOE 17323, presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 17-20, 1988.

- 43. Roper, M.K., Cheng, C.T., Varnon, J.E., Pope, G.A. Sepehmoori, K., "Interpretation of a CO₂ WAG Injectivity Test in the San Andres Formation Using a Compositional Simulator", Mabee Field, SPE 24163-MS, presented at the SPE/DOE Seventh Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 22-24, 1992.
- Jaramillo, A.R., "Utilization of a Black-Oil Simulator as a Monitor of Waterlood Operations in a San Andres Reservoir", SPE 19046-MS, GMK Unit, Unsolicited, This document was submitted for consideration for publication but included in SPE library, 1989.
- Taylor, A.R. Hinterlong, G.H., Kumar, K.H., "West Welch CO₂ Flood Simulation with an Equation of State and Mixed Wettability", SPE 39808, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 23-26, 1998.
- 46. Keeling, R.J., "CO₂ Miscible Flooding Evaluation of the South Welch Unit, Welch San Andres Field", SPE/DOE 12664, presented at the SPE/DOE Fouth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 15-18, 1984.
- 47. Hallenbeck, L.D., Harpole, K.J., Sistrunk, G.T., and Wier, D.R., "Innovative Approach to CO₂ Project Development Holds Promise for Improving CO₂ Flood Economics in Smaller Fields Nearing Abandonment ", South Cowden Field Example, SPE 28334, presented at the 69th Annual Technical Conference and Exhibition held in New Orleans, LA, September 25-28, 1994.
- 48. Wegener, D.C., Harpole, K.J., "Determination of Relative Permeability and Trapped Gas Saturation for Predictions of WAG Performance in the South Cowden CO₂ Flood", SPE/DOE 35429, presented at the SPE/DOE Tenth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 21-24, 1996.
- 49. Oxy Permian, "Anton Irish Clearfork CO₂ Flood Case History" presented at the Annual CO₂ Flooding Conference, Midland, Texas, December 7-8, 1999.
- 50. Burbank, D.E., "Early CO₂ Flood Experience at the South Wasson Clearfork Unit", SPE/DOE 24160, presented at the SPE/DOE Eighth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 22-24, 1992.
- 51. Poole, E.S. "Evaluation and Implementation of CO₂ Injection at the Dollarhide Devonian Unit", SPE 1722, presented at the SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 1988.
- 52. Poole, E.S., "Evaluation and Implementation of CO₂ Injection at the Dollarhide Devonian Unit", SPE 17277, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 10-11, 1988.
- 53. Lin, E.C., Poole, E.S., "Numerical Evaluation of Single-Slug, WAG, and Hybrid CO₂ Injection Processes, Dollarhide Devonian Unit, Andrews County Texas", SPE 20098, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 1990.
- 54. Bellavance, J.F.R, "Dollarhide Devonian CO₂ Flood: Project Performance Review 10 years later", SPE 35190, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 27-29, 1996.
- 55. Kovarik, J.J., Prasad, R.K., and Waddell, Wade, and Watts, "North Dollarhide (Devonian) Unit: Reservoir Characterization and CO₂ Feasibility Study", SPE 27678, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 1994.
- 56. Pontius, S.B. and Tham, M.J., "North Cross (Devonian) Unit CO₂ Flood Review of Flood Performance and Numerical Simulation Model", Journal of Petroleum Technology (December 1988), pp 1706-1714.
- 57. Mizenko, G.J., "North Cross (Devonian) Unit CO₂ Flood: Status Report", SPE/DOE 24210, presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 22-24, 1992.
- 58. Crameik, T.D., Plassey, J.A., "Carbon Dioxide Injection Project Sacroc Unit, Scurry County, Texas", SPE 72-D001, presented at the Annual Meeting Papers, Division of Production, Houston, Texas, March 6-8, 1972.
- 59. Graue, D.J., Blevins, T.R., "Sacroc Tertiary CO₂ Pilot Project", SPE 7090-MS, presented at the SPE Symposium on Improved Methods of Recovery, Tulsa, Oklahoma, April 16-17, 1978.
- Kane, A.V., "Performance Review of a Large-Scale CO₂-WAG Enhanced Recovery Project, Sacroc Kelly-Snyder Field," SPE 7091-PA, Journal of Petroleum Technology, Volume 31, Number 2, Pages 217-231, February 1979.
- 61. Gill, T.E., "Ten Years of Handling CO₂ for Sacroc Unit", SPE 11162-MS, presented at the Annual Technical Conference and Exhibition of Society of Petroleum Engineers, New Orleans, LA, Septermber 26-29, 1982.
- 62. Langston, M.V., Hoadley, S.F., Young, D.N., "Definitive CO₂ Flooding Response in the Sacroc Unit", SPE 17321-MS, presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 17-20, 1988.
- 63. Hawkins, J.T., Benvegnu, A.J., Wingate, T.P., McKameie, J.D., Pickard, C.D., Altum, J.T., "Sacroc Unit CO₂ Flood: Multidisciplinary Team Improves Reservoir Management and Decreases Operating Costs", SPE Reservoir Engineering, August 1996.
- 64. Bayat, M.G., Pickard, C.D., Benvegnu, A.J., Wingate, T.P., Larkin, R., "Linking Reservoir Characteristics and Recovery Processes at Sacroc", Second Annual Subsurface Fluid Control Symposium, Houston, Texas, September, 1996.
- 65. Gonzalez, R., Schepers, K., Reeves, S., Eslinger, E., Back, T., "Integrated Clustering/Geostatistical/Evolutionary Strategies Approach for 3D Reservoir Characteization and Assisted History Matching in a Complex Carbonate Reservoir, Sacroc Unit, Permian Basin", SPE 113978-MS, presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 20-230, 2008.

- Genetti, D.B., Whitaker, C.A., Smith, D.P., Price, L.M., "Applying Improved Recovery Processes and Effective Reservoir Management to Maximize Oil Recovery at Salt Creek", SPE 81458-MS, presented at the Middle East Oil Show, Bahrain, June 9-12, 2003.
- 67. Bishop, D.L., Williams, M.E., Gardner, S.E., Smith, D.P., Cochrane, T.C., "Vertical Conformance in a Mature Carbonate CO₂ Flood: Salt Creek Field Unit, Texas", SPE 88720-MS, presented at the Abu Dhabi International Conference and Exhibition, Abu Dhabi, United Arab Emirates, October 10-13, 2004.
- Brinkman, F.P., Kane, T.V, McCullough, R.R., Miertschin, J.W., "Use of Full-Field Simulation to Design a Miscible CO₂ Flood", Sharon Ridge Field, SPE 56882-PA, SPE Reservoir Evaluation and Engineering Journal, Volume 2, Number 3, pages 230-237, June, 1999.
- 69. Brown, G., Carvalho, B., Wray, A., Sensa, Smith, D., Tooms, M., Pennell, S., "Monitoring Alternating CO₂ and Water Injection and its Effect on Production in a Carbonate Reservoir using Permanent Fiber-Optic Distributed Temperature Systems", Cogdell Field, SPE 90248-MS, presented at the Annual Technical Conference and Exhibition of Society of Petroleum Engineers, Houston, Texas, Septermber 26-29, 2004.
- 70. Smith, D. and Kelly, T., "Katz (Strawn) Field CO₂ Project Permian Basin, Texas", presented at the 15th Annual CO₂ Flooding Conference, Midland, Texas, December 10-11, 2009.
- Roy, M.B., Tucker, C.W., Lakey, C.J., Cloud, W.B., "Waterflood Redevelopment Prior to Future Tertiary Attempts – A Case History", SPE 8460 MS, Postle, presented at the SPE Oklahoma City Regional Meeting, Oklahoma City, Oklahoma, February 21-22, 1977.
- 72. Wehner, S.C., "A CO₂ EOR Update from "No Man's Land", Challenges and Successes Postle Field, Oklahoma", presented at the 15th Annual CO₂ Flooding Conference, Midland, Texas, December, 10-11, 2009.
- Kirpatrick, R.K., Flanders, W.A., and Depauw, R.M., "Performance of the Twofreds CO₂ Injection Project", SPE 14439, presented at the SPE/DOE Fouth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 15-18, 1984.
- Flanders, W.A., and Depauw, R.M., "Update Case History: Performance of the Twofreds Tertiary CO₂ Project", SPE 26614-MS, presented at the Annual Technical Conference and Exhibition of Society of Petroleum Engineers, Houston, Texas, October 3-6, 1993.
- Flanders, W.A., and McGinnis, R.A., "CO₂ EOR Economics for Small-to-Medium-Size Fields", SPE 26391-MS, presented at the Annual Technical Conference and Exhibition of Society of Petroleum Engineers, Houston, Texas, October 3-6, 1993.
- Pittaway, K.R. and Runyan, E.E, "The Ford Geraldine Unit CO₂ Flood: Operating History", SPE 17278, presented at the SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 10-11, 1988.
- 77. Phillips, J.L., McPherson, J.L., and Leibrecht, R.J., "CO₂ Flood: Design and Initial Operations, Ford Jeraldine (Delaware Sand) Unit", SPE 12197, presented at the 58th Annual Technical Conference and Exhibition held in San Francisco, CA, October 5-8, 1983.
- Fox, M.J., Simlote, V.N., Stark, K.L., and Brinlee, L.D., "Review of CO₂ Flood, Springer "A" Sand, NE Purdy Unit", SPE/DOE 14938, presented at the SPE/DOE Fifth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 20-23, 1986.
- Flanders, W.A., Stanberry, W.A., and Martinez, M., "Review of CO₂ Performance of the Hansford Marmaton Unit", SPE/DOE 12327, presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 17-20, 1988.
- Ring, J.N., "An Overview of the North Ward Estes CO₂ Flood", SPE 30729, presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 22-25, 1995.
- 81. Oxy Elk Hills,"Enhanced Recovery from Mature Fields An Operators Perspective", presented at RPSEA Problem Identification Forum, University of California School of Engineering, November 29, 2006.
- Kleinsteiber, S.W., "The Wertz Tensleep CO₂ Flood: A Review of the Engineering Design and Initial Performance", SPE 18067, presented at the 63rd Annual Technical Conference and Exhibition of Society of Petroleum Engineers, Houston, Texas, October 2-5, 1988.
- Brokmeyer, R.J. and Borling, D.C., "Lost Soldier Tensleep CO₂ Tertiary Project Performance Case History Bairoil, Wyoming", SPE 35191, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 27-29, 1996.
- 84. Merit Energy Company, "Baroil Operations Center CO₂ Tertiary Recovery Review Lost Soldier and Wertz Fields, Sweetwater and Carbon County, Wyoming", Fourth Annual Wyoming Natural Gas Fair, September 28, 2000.
- 85. Eves, K.E. and Nevarez, J.J., "Update of Lost Soldier/Wertz Floods Living in a Constrained CO₂ Environment", presented at the 15th Annual CO₂ Flooding Conference, Midland, Texas, December 10-11, 2009.
- Kulkarni, M. M., Chen, Hung-Lung, Brummert, A.C., "CO₂ IOR Evaluation for the U.S. Rocky Mountain Assets", SPE 113297-MS, presented at the SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April 20-23, 2008.
- Larson, W.K., "Rangeley Weber Sand CO₂ Project: A Case History", presented at the Denver SPE MiniSymposium, November 19, 1987.

- Wackowski, R.K., Stevens, C.E., Maseoner, L.O., Attanucci, V., Larson, J.L., Aslesen, K.S., "Applying a Rigorous Decision Analysis Methodology to Optimization of a Tertiary Recovery Project: Rangely Weber Sand Unit, Colorado", SPE Oil and Gas Economics, Finance, and Management Conference held in London, England, 28-29, April 1992.
- Wakowski, R.K. and Masoner, L.O., "Rangely Weber Sand Unit CO₂ Project Update: Operating History", SPE/DOE 27755, presented at the SPE/DOE Ninth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 17-20, 1994.
- Fulbright, G.D, Hild, G.P., Horf, T.A., Myers, F.S., O'Toole, F.S., Wakowski, R.K., "Evolution of Conformance Improvement Efforts in a Major CO₂ WAG Injection Project, Rangly Field, Colorado", SPE/DOE 35361, presented at SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 21-24, 1996.
- Masoner, L.O., Abidi, H.R., Hild, G.P., "Diagnosing CO₂ Flood Performance Using Actual Performance Data", Rangely Field – Colorado, SPE/DOE 35363, presented at SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 21-24, 1996.
- 92. Wackowski, R.K., "Rangely Weber Sand Unit CO₂ Project Update", Powerpnt talk presented at the 5th Annual CO₂ Flooding Conference, Midland, Texas, December 10-11, 1999.
- 93. Schechter, D.S., McDonald, P., Sheffield, T., Baker, R. "Integration of Laboratory and Field Data for Development of a CO₂ Pilot in the Naturally Fractued Spraberry Trend Area, Permian Basin, Texas", SPE 36657, presented at the Annual Technical Conference and Exhibition held in Denver, CO., October 6-9, 1996.
- 94. Schechter, D.S., McDonald, P., Sheffield, T., Baker, R. "Reservoir Characterization and CO₂ Pilot Design in the Naturally Fractured Spraberry Trend Area, Permian Basin, Texas", SPE 35469, presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, March 27-29, 1996.
- Spivak, A., Garrison, W.H., Nguyen, J.P., "Review of an Immiscible CO₂ Project, Tar Zone, Fault Block V, Wilmington Field, California", SPE 17407-PA, SPE Reservoir Engineering Journal, Volume 5, Number 2, Pages 155-162, May, 1990.
- Saner, W.B., Patton, J.T., "CO₂ Recovery of Heavy Oil: Field Test", SPE 12082, presented at the Annual Technical Conference and Exhibition held in San Francisco, California, October 5-8, 1983.
- Sankur, V., Creek, J.L., DiJutio, S.S, Emanuel, A.S., "A Laboratory Study of Wilmington Tar Zone CO₂ Injection Project", SPE 12751, presented at the California Regional Meeting held at Long Beach, California, Apr 17-23, 1984.
- Jeschke, P.A., Schoeling, L., Hemmings, J., "CO₂ Flood Potential of California Oil Reservoirs and Possible CO₂ Sources", SPE 63305, presented at the SPE/AAPG Western Regional Meeting held in Long Beach, California, June 19-23, 2000.
- 99. Reid, T.B., Robinson, H.J., "Lick Creek Meakin Sand Unit Immiscible CO₂/Waterflood Project", SPE 9795, presented at SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 6-7, 1981.
- 100. Moffitt P.D., Zornes, D.R., "Lick Creek Meakin Sand Unit Immiscible CO₂/Waterflood Project", presented at the 67th Annual Technical Conference and Exhibition held in Washington DC, October 4-7, 1992.